Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inferring Continuous and Discrete Population Genetic Structure Across Space.

Identifieur interne : 000E22 ( Main/Exploration ); précédent : 000E21; suivant : 000E23

Inferring Continuous and Discrete Population Genetic Structure Across Space.

Auteurs : Gideon S. Bradburd [États-Unis] ; Graham M. Coop [États-Unis] ; Peter L. Ralph [États-Unis]

Source :

RBID : pubmed:30026187

Descripteurs français

English descriptors

Abstract

A classic problem in population genetics is the characterization of discrete population structure in the presence of continuous patterns of genetic differentiation. Especially when sampling is discontinuous, the use of clustering or assignment methods may incorrectly ascribe differentiation due to continuous processes (e.g., geographic isolation by distance) to discrete processes, such as geographic, ecological, or reproductive barriers between populations. This reflects a shortcoming of current methods for inferring and visualizing population structure when applied to genetic data deriving from geographically distributed populations. Here, we present a statistical framework for the simultaneous inference of continuous and discrete patterns of population structure. The method estimates ancestry proportions for each sample from a set of two-dimensional population layers, and, within each layer, estimates a rate at which relatedness decays with distance. This thereby explicitly addresses the "clines versus clusters" problem in modeling population genetic variation, and remedies some of the overfitting to which nonspatial models are prone. The method produces useful descriptions of structure in genetic relatedness in situations where separated, geographically distributed populations interact, as after a range expansion or secondary contact. We demonstrate the utility of this approach using simulations and by applying it to empirical datasets of poplars and black bears in North America.

DOI: 10.1534/genetics.118.301333
PubMed: 30026187
PubMed Central: PMC6116973


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inferring Continuous and Discrete Population Genetic Structure Across Space.</title>
<author>
<name sortKey="Bradburd, Gideon S" sort="Bradburd, Gideon S" uniqKey="Bradburd G" first="Gideon S" last="Bradburd">Gideon S. Bradburd</name>
<affiliation wicri:level="4">
<nlm:affiliation>Ecology, Evolutionary Biology, and Behavior Graduate Group, Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824 bradburd@msu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Ecology, Evolutionary Biology, and Behavior Graduate Group, Department of Integrative Biology, Michigan State University, East Lansing</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coop, Graham M" sort="Coop, Graham M" uniqKey="Coop G" first="Graham M" last="Coop">Graham M. Coop</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Population Biology, Department of Evolution and Ecology, University of California, Davis, California 95616.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Center for Population Biology, Department of Evolution and Ecology, University of California, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ralph, Peter L" sort="Ralph, Peter L" uniqKey="Ralph P" first="Peter L" last="Ralph">Peter L. Ralph</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute of Ecology and Evolution, Departments of Mathematics and Biology, University of Oregon, Eugene, Oregon 97403.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oregon</region>
</placeName>
<wicri:cityArea>Institute of Ecology and Evolution, Departments of Mathematics and Biology, University of Oregon, Eugene</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30026187</idno>
<idno type="pmid">30026187</idno>
<idno type="doi">10.1534/genetics.118.301333</idno>
<idno type="pmc">PMC6116973</idno>
<idno type="wicri:Area/Main/Corpus">000D40</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D40</idno>
<idno type="wicri:Area/Main/Curation">000D40</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D40</idno>
<idno type="wicri:Area/Main/Exploration">000D40</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inferring Continuous and Discrete Population Genetic Structure Across Space.</title>
<author>
<name sortKey="Bradburd, Gideon S" sort="Bradburd, Gideon S" uniqKey="Bradburd G" first="Gideon S" last="Bradburd">Gideon S. Bradburd</name>
<affiliation wicri:level="4">
<nlm:affiliation>Ecology, Evolutionary Biology, and Behavior Graduate Group, Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824 bradburd@msu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Ecology, Evolutionary Biology, and Behavior Graduate Group, Department of Integrative Biology, Michigan State University, East Lansing</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coop, Graham M" sort="Coop, Graham M" uniqKey="Coop G" first="Graham M" last="Coop">Graham M. Coop</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Population Biology, Department of Evolution and Ecology, University of California, Davis, California 95616.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Center for Population Biology, Department of Evolution and Ecology, University of California, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ralph, Peter L" sort="Ralph, Peter L" uniqKey="Ralph P" first="Peter L" last="Ralph">Peter L. Ralph</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute of Ecology and Evolution, Departments of Mathematics and Biology, University of Oregon, Eugene, Oregon 97403.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oregon</region>
</placeName>
<wicri:cityArea>Institute of Ecology and Evolution, Departments of Mathematics and Biology, University of Oregon, Eugene</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="eISSN">1943-2631</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Data Interpretation, Statistical (MeSH)</term>
<term>Gene Flow (genetics)</term>
<term>Genetic Variation (genetics)</term>
<term>Genetics, Population (methods)</term>
<term>Genetics, Population (statistics & numerical data)</term>
<term>Humans (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>North America (MeSH)</term>
<term>Population Groups (genetics)</term>
<term>Populus (genetics)</term>
<term>Ursidae (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amérique du Nord (MeSH)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Flux des gènes (génétique)</term>
<term>Groupes de population (génétique)</term>
<term>Génétique des populations (méthodes)</term>
<term>Génétique des populations (statistiques et données numériques)</term>
<term>Humains (MeSH)</term>
<term>Interprétation statistique de données (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Populus (génétique)</term>
<term>Ursidae (génétique)</term>
<term>Variation génétique (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Flow</term>
<term>Genetic Variation</term>
<term>Population Groups</term>
<term>Populus</term>
<term>Ursidae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Flux des gènes</term>
<term>Groupes de population</term>
<term>Populus</term>
<term>Ursidae</term>
<term>Variation génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genetics, Population</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Génétique des populations</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Genetics, Population</term>
</keywords>
<keywords scheme="MESH" qualifier="statistiques et données numériques" xml:lang="fr">
<term>Génétique des populations</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cluster Analysis</term>
<term>Data Interpretation, Statistical</term>
<term>Humans</term>
<term>Models, Genetic</term>
<term>North America</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Amérique du Nord</term>
<term>Analyse de regroupements</term>
<term>Animaux</term>
<term>Humains</term>
<term>Interprétation statistique de données</term>
<term>Modèles génétiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A classic problem in population genetics is the characterization of discrete population structure in the presence of continuous patterns of genetic differentiation. Especially when sampling is discontinuous, the use of clustering or assignment methods may incorrectly ascribe differentiation due to continuous processes (
<i>e.g.</i>
, geographic isolation by distance) to discrete processes, such as geographic, ecological, or reproductive barriers between populations. This reflects a shortcoming of current methods for inferring and visualizing population structure when applied to genetic data deriving from geographically distributed populations. Here, we present a statistical framework for the simultaneous inference of continuous and discrete patterns of population structure. The method estimates ancestry proportions for each sample from a set of two-dimensional population layers, and, within each layer, estimates a rate at which relatedness decays with distance. This thereby explicitly addresses the "clines versus clusters" problem in modeling population genetic variation, and remedies some of the overfitting to which nonspatial models are prone. The method produces useful descriptions of structure in genetic relatedness in situations where separated, geographically distributed populations interact, as after a range expansion or secondary contact. We demonstrate the utility of this approach using simulations and by applying it to empirical datasets of poplars and black bears in North America.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30026187</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1943-2631</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>210</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Genetics</Title>
<ISOAbbreviation>Genetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Inferring Continuous and Discrete Population Genetic Structure Across Space.</ArticleTitle>
<Pagination>
<MedlinePgn>33-52</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/genetics.118.301333</ELocationID>
<Abstract>
<AbstractText>A classic problem in population genetics is the characterization of discrete population structure in the presence of continuous patterns of genetic differentiation. Especially when sampling is discontinuous, the use of clustering or assignment methods may incorrectly ascribe differentiation due to continuous processes (
<i>e.g.</i>
, geographic isolation by distance) to discrete processes, such as geographic, ecological, or reproductive barriers between populations. This reflects a shortcoming of current methods for inferring and visualizing population structure when applied to genetic data deriving from geographically distributed populations. Here, we present a statistical framework for the simultaneous inference of continuous and discrete patterns of population structure. The method estimates ancestry proportions for each sample from a set of two-dimensional population layers, and, within each layer, estimates a rate at which relatedness decays with distance. This thereby explicitly addresses the "clines versus clusters" problem in modeling population genetic variation, and remedies some of the overfitting to which nonspatial models are prone. The method produces useful descriptions of structure in genetic relatedness in situations where separated, geographically distributed populations interact, as after a range expansion or secondary contact. We demonstrate the utility of this approach using simulations and by applying it to empirical datasets of poplars and black bears in North America.</AbstractText>
<CopyrightInformation>Copyright © 2018 Bradburd et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bradburd</LastName>
<ForeName>Gideon S</ForeName>
<Initials>GS</Initials>
<Identifier Source="ORCID">0000-0001-8009-0154</Identifier>
<AffiliationInfo>
<Affiliation>Ecology, Evolutionary Biology, and Behavior Graduate Group, Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824 bradburd@msu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coop</LastName>
<ForeName>Graham M</ForeName>
<Initials>GM</Initials>
<Identifier Source="ORCID">0000-0001-8431-0302</Identifier>
<AffiliationInfo>
<Affiliation>Center for Population Biology, Department of Evolution and Ecology, University of California, Davis, California 95616.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ralph</LastName>
<ForeName>Peter L</ForeName>
<Initials>PL</Initials>
<Identifier Source="ORCID">0000-0002-9459-6866</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Ecology and Evolution, Departments of Mathematics and Biology, University of Oregon, Eugene, Oregon 97403.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM108779</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genetics</MedlineTA>
<NlmUniqueID>0374636</NlmUniqueID>
<ISSNLinking>0016-6731</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003627" MajorTopicYN="N">Data Interpretation, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051456" MajorTopicYN="N">Gene Flow</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005828" MajorTopicYN="N">Genetics, Population</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
<QualifierName UI="Q000706" MajorTopicYN="Y">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009656" MajorTopicYN="N">North America</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044382" MajorTopicYN="N">Population Groups</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001503" MajorTopicYN="N">Ursidae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">isolation by distance</Keyword>
<Keyword MajorTopicYN="Y">model-based clustering</Keyword>
<Keyword MajorTopicYN="Y">population genetics</Keyword>
<Keyword MajorTopicYN="Y">population structure</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30026187</ArticleId>
<ArticleId IdType="pii">genetics.118.301333</ArticleId>
<ArticleId IdType="doi">10.1534/genetics.118.301333</ArticleId>
<ArticleId IdType="pmc">PMC6116973</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Ecol. 2016 Jun;25(11):2427-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26825293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Aug;164(4):1567-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12930761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2006 Dec;2(12):e190</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Sep 18;513(7518):409-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25230663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Aug;38(8):904-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16862161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2016 Jan;48(1):94-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26642242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):945-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Aug 14;9(1):3258</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30108219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2008 May;40(5):646-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18425127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2016 Jan 15;12(1):e1005703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26771578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 Aug;203(4):1827-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27317680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2013 Nov;67(11):3258-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24102455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Jan;163(1):367-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12586722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Jun;21(12):2839-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22574758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6380-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27274045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Jun 18;12:246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21682921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1994 Oct;9(10):373-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21236896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1964 Apr;49(4):561-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17248204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1997 Oct;51(5):1647-1653</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Eugen. 1951 Mar;15(4):323-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24540312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14847-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15459317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2018 Jan;208(1):383-398</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29167200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2009 Sep;9(5):1322-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21564903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1263-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24491114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Nov;196(3):713-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22861491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2014 Jan;68(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24111567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 Apr;202(4):1485-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26857625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Mar;19(6):1212-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20163548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Sep 16;6(9):e1001117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20862358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(11):e1002967</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23166502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1943 Mar;28(2):114-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17247074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2015 Sep;32(9):2338-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25989983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Nov;192(3):1065-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22960212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jan 18;409(6818):333-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11201740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Oct;5(10):e1000686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19834557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jul;14(8):2611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15969739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012 Jan;8(1):e1002453</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22291602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1997 Nov;14(11):1096-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9364767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 2002 Feb;61(1):31-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11895381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2018 Mar;208(3):1231-1245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29311149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Jun 11;522(7555):207-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25731166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2014 Nov;68(11):3260-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25065449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2002 Apr;51(2):238-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12028731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2005 Dec;1(6):e70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16355252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1978 Sep 1;201(4358):786-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">356262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Jun;197(2):573-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24700103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Sep;19(9):1655-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19648217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Apr;166(1):39-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15760349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res (Camb). 2008 Feb;90(1):139-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18289408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Apr;175(4):1787-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Sep;14(9):1679-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15342553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2013 Mar;13(2):306-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23311503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Feb;18(2):337-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11847089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Jan 18;541(7637):302-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28102248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Dec 14;13:703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23241106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Popul Biol. 1975 Oct;8(2):127-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1198349</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Michigan</li>
<li>Oregon</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Bradburd, Gideon S" sort="Bradburd, Gideon S" uniqKey="Bradburd G" first="Gideon S" last="Bradburd">Gideon S. Bradburd</name>
</region>
<name sortKey="Coop, Graham M" sort="Coop, Graham M" uniqKey="Coop G" first="Graham M" last="Coop">Graham M. Coop</name>
<name sortKey="Ralph, Peter L" sort="Ralph, Peter L" uniqKey="Ralph P" first="Peter L" last="Ralph">Peter L. Ralph</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E22 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E22 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30026187
   |texte=   Inferring Continuous and Discrete Population Genetic Structure Across Space.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30026187" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020